49 research outputs found

    Pinwheel patterns and powder diffraction

    Get PDF
    Pinwheel patterns and their higher dimensional generalisations display continuous circular or spherical symmetries in spite of being perfectly ordered. The same symmetries show up in the corresponding diffraction images. Interestingly, they also arise from amorphous systems, and also from regular crystals when investigated by powder diffraction. We present first steps and results towards a general frame to investigate such systems, with emphasis on statistical properties that are helpful to understand and compare the diffraction images. We concentrate on properties that are accessible via an alternative substitution rule for the pinwheel tiling, based on two different prototiles. Due to striking similarities, we compare our results with the toy model for the powder diffraction of the square lattice.Comment: 7 pages, 4 figure

    MLD Relations of Pisot Substitution Tilings

    Full text link
    We consider 1-dimensional, unimodular Pisot substitution tilings with three intervals, and discuss conditions under which pairs of such tilings are locally isomorhphic (LI), or mutually locally derivable (MDL). For this purpose, we regard the substitutions as homomorphisms of the underlying free group with three generators. Then, if two substitutions are conjugated by an inner automorphism of the free group, the two tilings are LI, and a conjugating outer automorphism between two substitutions can often be used to prove that the two tilings are MLD. We present several examples illustrating the different phenomena that can occur in this context. In particular, we show how two substitution tilings can be MLD even if their substitution matrices are not equal, but only conjugate in GL(n,Z)GL(n,\mathbb{Z}). We also illustrate how the (in our case fractal) windows of MLD tilings can be reconstructed from each other, and discuss how the conjugating group automorphism affects the substitution generating the window boundaries.Comment: Presented at Aperiodic'09 (Liverpool

    SCD Patterns Have Singular Diffraction

    Full text link
    Among the many families of nonperiodic tilings known so far, SCD tilings are still a bit mysterious. Here, we determine the diffraction spectra of point sets derived from SCD tilings and show that they have no absolutely continuous part, that they have a uniformly discrete pure point part on the z-axis, and that they are otherwise supported on a set of concentric cylinder surfaces around this axis. For SCD tilings with additional properties, more detailed results are given.Comment: 11 pages, 2 figures; Accepted for Journal of Mathematical Physic

    On the Frequency Module of the Hull of a Primitive Substitution Tiling

    Get PDF
    Understanding the properties of tilings is of increasing relevance to the study of aperiodic tilings and tiling spaces. This work considers the statistical properties of the hull of a primitive substitution tiling, where the hull is the family of all substitution tilings with respect to the substitution. A method is presented on how to arrive at the frequency module of the hull of a primitive substitution tiling (the minimal -module, where is the set of integers) containing the absolute frequency of each of its patches. The method involves deriving the tiling\u27s edge types and vertex stars; in the process, a new substitution is introduced on a reconstructed set of prototiles

    Primitive substitution tilings with rotational symmetries

    Get PDF
    This work introduces the idea of symmetry order, which describes the rotational symmetry types of tilings in the hull of a given substitution. Definitions are given of the substitutions σ6 and σ7 which give rise to aperiodic primitive substitution tilings with dense tile orientations and which are invariant under six- and sevenfold rotations, respectively; the derivation of the symmetry orders of their hulls is also presented

    PV cohomology of pinwheel tilings, their integer group of coinvariants and gap-labelling

    Get PDF
    In this paper, we first remind how we can see the "hull" of the pinwheel tiling as an inverse limit of simplicial complexes (Anderson and Putnam) and we then adapt the PV cohomology introduced in a paper of Bellissard and Savinien to define it for pinwheel tilings. We then prove that this cohomology is isomorphic to the integer \v{C}ech cohomology of the quotient of the hull by S1S^1 which let us prove that the top integer \v{C}ech cohomology of the hull is in fact the integer group of coinvariants on some transversal of the hull. The gap-labelling for pinwheel tilings is then proved and we end this article by an explicit computation of this gap-labelling, showing that \mu^t \big(C(\Xi,\ZZ) \big) = \dfrac{1}{264} \ZZ [\dfrac{1}{5}].Comment: Problems of compilation by arxiv for figures on p.6 and p.7. I have only changed these figure
    corecore